Dynamic Stiffness Method for Circular Stochastic Timoshenko Beams: Response Variability and Reliability Analyses

نویسندگان

  • S. GUPTA
  • C. S. MANOHAR
چکیده

The problem of characterizing response variability and assessing reliability of vibrating skeletal structures made up of randomly inhomogeneous, curved/straight Timoshenko beams is considered. The excitation is taken to be random in nature. A frequency-domain stochastic "nite element method is developed in terms of dynamic sti!ness coe$cients of the constituent stochastic beam elements. The displacement "elds are discretized by using frequencyand damping-dependent shape functions. Questions related to discretizing the inherently non-Gaussian random "elds that characterize beam elastic, mass and damping properties are considered. Analytical methods, combined analytical and simulation-based methods, direct Monte Carlo simulations and simulation procedures that employ importance sampling strategies are brought to bear on analyzing dynamic response variability and assessment of reliability. Satisfactory performance of approximate solution procedures outlined in the study is demonstrated using limited Monte Carlo simulations. 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the beam discontinuity with two analyses in strong and weak forms using a torsional spring model

In this paper, a discontinuity in beams whose intensity is adjusted by the spring stiffness factor is modeled using a torsional spring. Adapting two analyses in strong and weak forms for discontinuous beams, the improved governing differential equations and the modified stiffness matrix are derived respectively. In the strong form, two different solution methods have been presented to make an a...

متن کامل

Ritz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity

Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...

متن کامل

Modeling of the Beam Discontinuity with Two Analyses in Strong and Weak Forms using a Torsional Spring Model

In this paper, a discontinuity in beams whose intensity is adjusted by the spring stiffness factor is modeled using a torsional spring. Adapting two analyses in strong and weak forms for discontinuous beams, the improved governing differential equations and the modified stiffness matrix are derived respectively. In the strong form, two different solution methods have been presented to make an a...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

Effect of Bed and Crack on the Natural Frequency for the Timoshenko Beam Using Finite Element Method

In this study, the natural frequencies and mode shapes of beams without cracks and cracked Timoshenko beams is calculated with different boundary conditions using finite element method. The energy method is used to solve the equations. Hardness and softness matrices for Timoshenko beam without crack are obtained by solving the potential and kinetic energy equations. Then for investigation of cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002